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Abstract 

The most commonly used method in environmental chemistry to deal with values below detection limits is to substitute a fraction of 
the detection limit for each nondetect. Two decades of research has shown that this fabrication of values produces poor estimates of 
statistics, and commonly obscures patterns and trends in the data. Papers using substitution may conclude that significant differences, 
correlations, and regression relationships do not exist, when in fact they do. The reverse may also be true. Fortunately, good alternative 
methods for dealing with nondetects already exist, and are summarized here with references to original sources. Substituting values for 
nondetects should be used rarely, and should generally be considered unacceptable in scientific research. There are better ways. 
Published by Elsevier Ltd. 
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1. Introduction 

In his satire "Hitchhiker's Guide To The Galaxy", 
Douglas Adams wrote of his characters' search through 
space to find the answer to "the question of Life, The Uni­
verse and Everything". In what is undoubtedly a commen­
tary on the inability of science to answer such questions, 
the computer built to process it determines that the answer 
is 42. There is beauty in a precise answer - a totally arbi­
trary, but precise, answer. 

Environmental scientists often provide a similar answer 
to a different question - what to do with "nondetect" data? 
Nondetects are low-level concentrations of organic or inor­
ganic chemicals with values known only to be somewhere 
between zero and the laboratory's detection/reporting lim­
its. Measurements are considered too imprecise to report as 
a single number, so the value is commonly reported as 
being less than an analytical threshold, for example 
"<1". Long considered second class data, nondetects 
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complicate the familiar computations of descriptive statis­
tics, of testing differences among groups, and of correlation 
coefficients and regression equations. 

The worst practice when dealing with nondetects is to 
exclude or delete them. This produces a strong upward bias 
in all subsequent measures of location such as means and 
medians. After exclusion, comparisons are being made 
between the mean of the top 20% of concentrations in 
one group versus the top 50% of another group, for exam­
ple. This provides little insight into the original data. 
Excluding nondetects removes the primary signal that 
should be sent to hypothesis tests - the proportion of data 
in each group that lies above the reporting limit(s), the shift 
producing the difference between 20% and 50% detects. 

The most common procedure within environmental 
chemistry to deal with nondetects continues to be substitu­
tion of some fraction of the detection limit. This method is 
better labeled as "fabrication", as it reports and uses a sin­
gle value for concentration data where a single value is 
unknown. Within the field of water chemistry, one-half is 
the most commonly used fraction, so that 0.5 is used as if 
it had been measured whenever a <1 (detection limit 
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of 1) occurs. For air chemistry, one over the square root of 
two, or about 0.7 times the detection limit, is commonly 
used. Douglas Adams might have chosen 0.42. Studies 20 
years ago found substitution to be a poor method for com­
puting descriptive statistics (Gilliom and Helsel, 1986). 
Subsequent justifications for using one-half the reporting 
limit when data follow a uniform distribution (Hornung 
and Reed, 1990) only considered estimation of the mean. 
Any substitution of a constant fraction of reporting limits 
will distort estimates of the standard deviation, and there­
fore all (parametric) hypothesis tests using that statistic. 
This is illustrated later using simulations. Also, justifica­
tions such as these have never considered errors due to 
changing reporting limits arising from changing interfer­
ences between samples or similar causes. Substituting val­
ues tied to those changing limits introduces a signal into 
the data that was not present in the media sampled. Substi­
tuted values using a fraction anywhere between 0 and 0.99 
times the detection limit are equivalently arbitrary, equiva­
lently precise, equivalently wrong. 

Examples of substitution of fractions of the detection 
limit for nondetects abound in the scientific literature. 
McCarthy et al. (1997) computed descriptive statistics of 
organic compounds in relatively uncontaminated areas. 
They employed substitution of a 'sliding scale' fraction of 
the detection limit, setting the fraction to be a function of 
the proportion of nondetects in the data set. The accuracy 
and value of their resulting statistics is unknowable. 
Another scientist using different fractions to provide values 
for nondetect data would get different results. Similarly, 
Tajimi et al. (2005) computed correlation coefficients after 
substituting one-half the detection limit for all nondetects. 
They found no correlations between dioxin concentrations 
and the factors they investigated. Was this because there 
were none, or was it the result of their data substitutions? 
Barringer et al. (2005) tested for differences in mercury con­
centrations of groundwater in areas of differing land use. 
Were their results due to concentrations actually found in 
the aquifer, or to the fact that one-half the detection limit 
was substituted for some nondetects, while other nonde­
tects were simply deleted? Finally, Rocque and Winker 
(2004) substituted random values between zero and the 
detection limits in order to compute sums and test hypoth­
eses. How would those results have changed if different 
random values had been assigned? 

Statisticians use the term "censored data" for data sets 
where specific values for some observations are not quanti­
fied, but are known to exceed or to be less than a threshold 
value. Techniques for computing statistics for censored 
data have long been employed in medical and industrial 
studies, where the length of time is measured until an event 
occurs such as the recurrence of a disease or failure of a 
manufactured part. For some observations the event may 
not have occurred by the time the experiment ends. For 
these, the time is known only to be greater than the exper­
iment's length, a censored "greater-than" value. Methods 
for computing descriptive statistics, testing hypotheses, 

and performing correlation and regression are all com­
monly used in medical and industrial statistics, without 
substituting arbitrary values. These methods go by the 
names of "survival analysis" and "reliability analysis". 
There is no reason why these same methods could not also 
be used in the environmental sciences, but to date, their use 
is rare. 

Two early examples using methods for censored data in 
environmental applications are Millard and Deverel (1988) 
and She (1997). Millard and Deverel (1988) pioneered the 
use of two-group survival analysis methods in environmen­
tal work, testing for differences in metals concentrations in 
the groundwaters of two aquifers. Many nondetected values 
were present, at multiple detection limits. They found differ­
ences in zinc concentrations between the two aquifers using 
a survival analysis method called a score test. Had they 
substituted one-half the detection limit for zinc concentra­
tions and run at-test, they would not have found those dif­
ferences (Helsel, 2005b). She (1997) computed descriptive 
statistics of organics concentrations in sediments using a 
survival analysis method called Kaplan-Meier, the standard 
procedure in medical statistics. Means, medians and other 
statistics were computed without substitutions, even though 
the data contained 20% nondetects censored at eight differ­
ent detection limits. Substitution would have given very dif­
ferent results. More recently, Baccarelli et al. (2005) 
reviewed a variety of methods for handling nondetects in a 
study of dioxin exposure. They found that imputation meth­
ods designed for censored data far outperformed substitu­
tion of values such as one-half the detection limit. Other 
examples of the use of survival analysis methods for envi­
ronmental data can be found in Helsel (2005b). 

The goal of this paper is to clearly illustrate the prob­
lems with substitution of arbitrary values for nondetects. 
Methods designed expressly for censored data are directly 
compared to results using arbitrary substitution of values 
for nondetects when computing summary statistics, regres­
sion equations, and hypothesis tests. 

2. Methods 

Statisticians generate simulated data for much the same 
reasons as chemists prepare standard solutions - so that the 
conditions are exactly known. Statistical methods are then 
applied to the data, and the similarity of their results to the 
known, correct values provides a measure of the quality of 
each method. Fifty X, Y pairs of data were generated for 
this study with X values uniformly distributed from 0 to 
100. The Y values were computed from a regression equa­
tion with slope= 1.5 and intercept= 120. Noise was then 
randomly added to each Y value so that points did not fall 
exactly on the straight line. The result is data having a 
strong linear relation between Y and X with a moderate 
amount of noise in comparison to that linear signal. 

The noise applied to the data represented a "mixed 
normal" distribution, two normal distributions where the 
second had a larger standard deviation than the first. All 
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of the added noise had a mean of zero, so the expected 
result over many simulations is still a linear relationship 
between X and Y with a slope = 1.5 and intercept = 120. 
Eighty percent of data came from the distribution with 
the smaller standard deviation, while 20% reflected the sec­
ond distribution's increased noise level, to generate outli­
ers. The 50 generated values are plotted in Fig. 1A. 

The 50 observations were also assigned to one of two 
groups in such a way that group differences should be dis­
cernible. The mean, standard deviation, correlation coeffi­
cient, regression slope of Y versus X, a t-test between the 
means of the two groups and its p-value for the 50 generated 
observations in Fig. 1A were then all computed and stored. 
These "benchmark" statistics are the target values to which 
later estimates are compared. The later estimates are made 
after censoring the points plotted as gray dots in Fig. 1A. 

Two detection limits (at 150 and 300) were then applied 
to the data, the black dots of Fig. 1A remaining as detected 

A. DATA BEFORE CENSORING 
GRAY DOTS BECOME NONDETECTS 

> 300 ~ • ~ .~ 
cl • : ~ -?: .'* ~ ~ • 
~ 200 1---r.-.i!~'-'-"'-"-~•_'-v~,_:_:~'--•-".,.'-x-, -I 
§ 100 " " 

0 25 50 75 100 
ORIGINALX 

B. ESTIMATES OF MEAN 

240 
,. ,,.. 

z 

300 

150 

,,.. ,. 
< 198.1 
U.J ,., 
::E 160 ,,,. 
~ ,,.. 
(I) "' U.J ,"' 

80 ,. 
0.00 0.25 0.50 0.75 1.00 

FRACTION OF DL USED 

D. ESTIMATED CORRELATION COEFF. 

ti: 0.8 1------------l 0. 77 

8 
. 0.6 

§ 
~ 0.4 

ffi 

u 
~ -1 
;::: 
< 
~ -2 

... -... 
,' ' ... ... \. 

'*'""' ' ... ' 
0.00 0. 25 0. 50 0. 75 1.00 

FRACTION OF DL USED 

F. ESTIMATED T-TESTS 

values with unique numbers, and the gray dots becoming 
nondetects below one of the two detection limits. In total, 
33 of 50 observations, or 66% of observations, were cen­
sored below one of the two detection limits. This is within 
the range of amounts of censoring found in many environ­
mental studies. Use of a smaller percent censoring would 
produce many of the same effects as found here, though 
not as obvious or as strong. 
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Fig. 1. (A) Generated data used. Horizontal lines are detection limits. (B)-(G) Estimated values for statistics of censored data (Y) as a function of the 
fraction of the detection limit (X) used to substitute values for each nondetect. Horizontal lines are at target values of each statistic obtained using 
uncensored data. 
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detection limits. Within a single lab, detection limits change 
over time due to changes in methods, protocols, and instru­
ment precision. Interferences by other chemicals cause 
detection limits for the chemical of interest to change from 
sample to sample. Laboratories sometimes use biased 
reporting conventions known as "insider censoring", in 
which all values measured as <150 are instead reported 
as <300 while values measured between 150 and 300 are 
reported as single numbers (Helsel, 2005a). All of these 
practices introduce more movement of detection limits 
than is being considered here. Substituting a fraction of 
these variable limits for nondetects may introduce patterns 
into the data that were not there originally, or obscure pat­
terns that were (Helsel, 2005b ). Therefore, substituting 
values as a function of detection limits that change due 
to these influences is likely to produce less accurate results 
in practice than those reported here for substitution based 
on two static detection limits. 

3. Results 

Fig. 1 B-G illustrate the results of estimating a statistic 
or running a hypothesis test after substituting numbers 
for nondetects by multiplying the detection limit value by 
a fraction between 0 and 1. Estimated values for each sta­
tistic are plotted on the Y axis, with the fraction of the 
detection limit used in substitution on the X axis. A frac­
tion of 0.5 on the X axis corresponds to substituting a value 
of 75 for all <150 s, and 150 for all <300 s, for example. On 
each plot is also shown the value for that statistic before 
censoring, as a "benchmark" horizontal line. The same 
information is presented in tabular form in Table 1. 

Estimates of the mean of Y are presented in Fig. 1 B. The 
mean Y before censoring equals 198.1. Afterwards, substi­
tution across the range between 0 and the detection limits 
(DL) produces a mean Y that can fall anywhere between 
72 and 258. For this data set, substituting data using a frac­
tion somewhere around 0.7 DL appears to mimic the 
uncensored mean. But for another data set with different 
characteristics, another fraction might be "best". And 0.7 
is not the "best" for these data to duplicate the uncensored 
standard deviation, as shown in Fig. 1C. Something larger 
or smaller, closer to 0.5 or 0.9 would work better for that 

Table 1 
Statistics and test results before and after censoring data as nondetects 

Procedure Before Range after Using censored 
censoring using substitution methods 

Estimating mean 198.1 72-258 191.3 
Estimating std. dev. 52.4 41-106 54.0 
Correlation coeff. 0.77 0.29-0.54 0.55 
Regression slope 1.46 0.62-1.12 1.46 
t-statistic 2.74 1.8 to 0.68 1.81 
p-value for t 0.009 0.08-0.50 0.07 

Data in the middle two columns are also shown in Fig. 1. The right 
column reports the results of tests expressly designed to work with cen­
sored data, without requiring substitution for nondetects. 

statistic, for this set of data. Performance will also differ 
depending on the proportion of data censored, as discussed 
later. Results for the median (not shown) were similar to 
those for the mean, and results for the interquartile range 
(not shown) were similar to those for the standard devia­
tion. The arbitrary nature of the choice of fraction, com­
bined with its large effect on the result, makes the choice 
of a single fraction an uncomfortable one. As shown later, 
it is also an unnecessary one. 

Substitution results in poor estimates of correlation 
coefficients (Fig. 1 D) and regression slopes (Fig. 1 E), much 
further away from their respective uncensored values than 
was true for descriptive statistics. The closest match for the 
correlation coefficient appears to be near 0.7, while for the 
regression slope, substituting 0 would be best! With data 
having other characteristics, the "best" fraction will differ. 
Correlation coefficients, regression slopes, and their p-val­
ues should be considered particularly suspect when values 
are substituted for nondetects, especially if the statistics 
are found to be insignificant. 

The generated data were split into two groups. In the 
first group were data with X values of 0-40 and 60-70, 
while the second group contained those with X values from 
40 to 60 and then 70 and above. For the most part, values 
in the first group plotted on the left half of Fig. 1A, and the 
second group plotted primarily on the right half. Because 
the slope change is large relative to the noise, mean Y val­
ues for the two groups should be seen as different. Before 
the data were censored, the two-sided t-statistic for the test 
of whether the mean Y values were equal was 2.74, with a 
p-value of 0.009. This is a small p-value, so before censor­
ing the means for the two groups are determined to be 
different. 

Fig. 1 F and G and Table 1 report the results of two­
group t-tests following substitution of values for non­
detects. The t-statistics never reach as large a negative value 
as for the uncensored data, and the p-values are therefore 
never as significant. At no time do the p-values go below 
0.05, the traditional cutoff for statistical significance. 
Results of t-tests after using substitution, if found to be 
insignificant, should not be relied on. Much of the power 
of the test has been lost, as substitution is a poor method 
for recovering the information contained in nondetects. 
Fig. 1 F and G show a strong drop-off in performance when 
the best choice of substituted fraction, which in practice is 
always unknown, is not chosen. 

Clearly, no single fraction of the detection limit, when 
used as substitution for a nondetect, does an adequate 
job of reproducing more than one of the statistics in 
Fig. 1. This study should not be used to pick 0.7 or some 
other fraction as "best"; different fractions may do a better 
job for data with different characteristics. The process of 
substituting a fraction of the detection limits has repeatedly 
been shown to produce poor results in simulation studies 
(Gilliom and Helsel, 1986; Singh and Nocerino, 2002; 
and many others - see Helsel, 2005b for a list). As demon­
strated by the long list of research findings and this simple 
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study, substitution of a fraction of the detection limit for 
nondetects should rarely be considered acceptable in a 
quantitative analysis. There are better methods available. 

When might substitution be acceptable? Research scien­
tists tend to use chemical analyses with relatively high pre­
cision and low detection limits. These chemical analyses are 
often performed by only one laboratory, and detection lim­
its stay fairly constant. Research data sets may include 
hundreds of data points, and in comparison our 50 obser­
vations appears small. For large data sets with a censoring 
percentage below 60% nondetects, the consequences of 
substitution should be less severe than those presented 
here. In contrast, scientists collecting data for regulatory 
purposes rarely have as many as 50 observations in any 
one group; sizes near 20 are much more common. Detec­
tion limits in monitoring studies can be relatively high com­
pared to ambient levels, so that 60% or greater nondetects 
is not unusual. Multiple detection limits arise from several 
common causes, all of which are generally unrelated to 
concentrations of the analyte(s) of interest. These include 
using data from multiple laboratories, varying dilutions, 
and varying sample characteristics such as dissolved solids 
concentrations or amounts of lipids present. Resulting data 
like that of She (1997) with eight different detection limits 
out of 11 nondetects is quite typical. In this situation, the 
cautions given here must be taken very seriously, and 
results based on substitution severely scrutinized before 
publication. Reviewers should suggest that the better meth­
ods available from survival analysis be used instead. 

Is there a censoring percentage below which the use 
of substitution can be tolerated? The short answer is 
"who knows?" The US Environmental Protection Agency 
(USEPA) has recommended substitution of one-half the 
detection limit when censoring percentages are below 
15% (USEPA, 1998). This appears to be based on opinion 
rather than any published article. Even in this case, answers 
obtained with substitution will have more error than those 
using better methods (see Helsel and Cohn, 1988; She, 
1997; and other references in Helsel, 2005b ). Will the 
increase in error with substitution be small enough to be 
offset by the cost of learning to use better, widely available 
methods of survival analysis? Answering that question 
depends on the quality of result needed, but substitution 
methods should be considered at best "semi-quantitative", 
to be used only when approximate answers are required. 
Their current frequency of use in research publications is 
certainly excessive, in light of the availability of methods 
designed expressly for analysis of censored data. 

3.1. Statistical methods designed for censored data 

Methods designed specifically for handling censored 
data are standard procedures in medical and industrial 
studies, and have been applied to the environmental sci­
ences by Helsel (2005b). Results for the current data using 
one of these methods, maximum likelihood estimation 
(MLE), are reported in the right-hand column of Table 1. 

M LE assumes that data have a particular shape (or distri­
bution), which in Table 1 was a normal distribution, the 
familiar bell-shaped curve. 

The right-hand column of Table 1 shows that methods 
designed for censored data produce values for each statistic 
that are as good or better than the best of the estimates 
produced by substitution. These methods accomplish this 
without substituting arbitrary values for nondetects. 
Instead, M LE fits a distribution to the data that matches 
both the values for detected observations, and the propor­
tion of observations falling below each detection limit. The 
information contained in nondetects is captured efficiently 
by the proportion of data falling below each detection 
limit. The correlation coefficient reported is the "likelihood 
r" coefficient, computed by comparing the M LE solutions 
that best fit the data with and without the X variable. If 
errors decrease and the fit improves by including the X var­
iable, a significant likelihood correlation coefficient is pro­
duced. The traditional Pearson's r correlation coefficient is 
the uncensored analogue to the likelihood r coefficient 
(Allison, 1995). 

M LE can be used to compute hypothesis tests between 
groups of censored data (Helsel, 2005b). Multiple detection 
limits can be incorporated. No substituted values are used. 
Instead, likelihood ratio tests determine whether splitting 
the data into groups provides a better fit than leaving all 
the data as one group. If so, the test is significant and the 
means differ among the groups. Results for an M LE ver­
sion of a two-group test are reported in the t-test row of 
Table 1. That statistic provides a closer approximation to 
the uncensored statistic than any of the substitution results. 
The test statistic is not as significant as was a t-test prior to 
censoring. The difference between the M LE test results and 
those prior to censoring is a measure of the loss of informa­
tion caused by changing numerical values into values 
known only as less than the detection limits. 

Maximum likelihood methods generally do not work 
well for small data sets (fewer than 30-50 detected values), 
in which one or two outliers throw off the estimation, or 
where there is insufficient evidence to know whether the 
assumed distribution fits the data well (Singh and Nocerino, 
2002; Shumway et al., 2002). For these cases, nonparamet­
ric methods that do not assume a specific distribution and 
shape of data would be preferred. See Helsel (2005b) for a 
full list of nonparametric procedures for censored data, 
including variations on the familiar rank-sum test and 
Kendall's s correlation coefficient. 

3.2. Availability of software for censored data methods 

All of the maximum likelihood methods shown here, 
and equivalent nonparametric tests, are found in the "sur­
vival analysis" or "reliability analysis" sections of standard 
statistics software, including M initab, SAS, Stata or S-Plus. 
M LE routines are generally coded to handle nondetects, 
called "left-censored data" by statisticians, as well as 
right-censored "greater-thans" more common to the 
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medical/industrial fields for which they were designed. 
Nonparametric methods in software are currently coded 
to use only greater-thans. A transformation called "flip­
ping" (Helsel, 2005b) allows these nonparametric methods 
to use the nondetects of environmental sciences. None of 
these methods are available in Excel, although there are 
add-on packages that compute some of them. 

Macros or scripts that either add functionality to soft­
ware or save steps in setting up these analyses are available 
through the internet. Macros for Minitab statistical soft­
ware that were produced to follow the textbook by Helsel 
(2005b) are available no cost at: http://www.practical­
stats.com/nada. Scripts (named NADA for R) for the R 
statistics package, which runs on PCs, Macintosh and Unix 
computers, are available through the Comprehensive R 
Archive Network (CRAN) at http://www.r-project.org/ 
or at the Enviro-R software page on the Source Forge 
archive site, http://enviror.sourceforge.net/ . However, 
though free, R is a complex software package. Those not 
already familiar with it will find that it takes about the 
same amount of effort to master it as required by the soft­
ware for modeling and spatial analysis familiar to environ­
mental scientists. 

4. Conclusions 

When a fraction of the detection limits is used to substi­
tute (fabricate) values for nondetects, resulting estimates of 
correlation coefficients, regression slopes, hypothesis tests, 
and even simple means and standard deviations are inaccu­
rate and irreproducible. They may be very far from their 
true values, and the amount and type of deviation is 
unknown. Given the current expense and technological 
sophistication of sampling equipment and chemical analy­
ses, fabricating values for data at the end of a study is 
nowhere close to being "state of the science". It wastes 
the considerable expense of data collection and salaries 
by producing inconclusive and potentially incorrect results. 
Better methods than substitution are available for estimat­
ing descriptive statistics, performing hypothesis tests, and 
computing correlation coefficients and regression equa­
tions. Using these methods should provide better, more 
accurate scientific interpretations. 
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